Cryptography and Network Security Chapter 3

Fourth Edition by William Stallings

Lecture slides by Lawrie Brown

Modern Block Ciphers

> now look at modern block ciphers
$>$ one of the most widely used types of cryptographic algorithms
$>$ provide secrecy /authentication services
$>$ focus on DES (Data Encryption Standard)
> to illustrate block cipher design principles

Block vs Stream Ciphers

ylock ciphers process messages in blocks, each of which is then en/decrypted
$>$ like a substitution on very big characters - 64-bits or more
> stream ciphers process messages a bit or byte at a time when en/decrypting
> many current ciphers are block ciphers
$>$ broader range of applications

Illustration of Block Cipher Technique

Block vs Stream Ciphers

Block vs Stream Ciphers

Block Cipher Principles

most symmetric block ciphers are based on a Feistel Cipher Structure
> block ciphers look like an extremely large substitution
> In general, for an n-bit ideal block cipher, the length of the key defined in this fashion is $n \times 2^{n}$ bits.

Ideal Block Cipher

Claude Shannon and SubstitutionPermutation Ciphers

> Claude Shannon introduced idea of substitutionpermutation (S-P) networks in 1949 paper
$>$ form basis of modern block ciphers
> S-P nets are based on the two primitive cryptographic operations seen before:

- substitution (S-box)
- permutation (P-box)
> provide confusion \& diffusion of message \& key

Confusion and Diffusion

> cipher needs to completely obscure statistical properties of original message
> a one-time pad does this
$>$ more practically Shannon suggested combining S \& P elements to obtain:
$>$ diffusion - dissipates statistical structure of plaintext over bulk of ciphertext
> confusion - makes relationship between ciphertext and key as complex as possible

Feistel Cipher Structure

partitions input block into two halves

- process through multiple rounds which
- perform a substitution on left data half
- based on round function of right half \& subkey
- then have permutation swapping halves
> implements Shannon's S-P net concept

Feistel Cipher Structure

Feistel Cipher Design Elements

> block size
$>$ key size
$>$ number of rounds
$>$ subkey generation algorithm
$>$ round function
> fast software en/decryption
> ease of analysis

Feistel Cipher Decryption

Data Encryption Standard (DES)

$>$ most widely used block cipher in world
> adopted in 1977 by NBS (now NIST)

- as FIPS PUB 46
$>$ encrypts 64-bit data using 56-bit key
> has widespread use

DES History

> IBM developed Lucifer cipher

- by team led by Feistel in late 60's
- used 64-bit data blocks with 128-bit key
$>$ then redeveloped as a commercial cipher with input from NSA and others
> in 1973 NBS issued request for proposals for a national cipher standard
>IBM submitted their revised Lucifer which was eventually accepted as the DES

DES Encryption Overview

Initial Permutation IP

$>$ first step of the data computation
> IP reorders the input data bits
> even bits to LH half, odd bits to RH half
> quite regular in structure (easy in h / w)
> example:

$$
\begin{gathered}
\operatorname{IP}(675 a 6967 \text { 5e5a6b5a) }= \\
(-------004 d f 6 f b)
\end{gathered}
$$

Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Initial Permutation IP

$>$ first step of the data computation
$>$ IP reorders the input data bits
> even bits to LH half, odd bits to RH half
> quite regular in structure (easy in h / w)
> example:

```
IP(675a6967 5e5a6b5a) = (ffb2194d
004df6fb)
```


DES Round Structure

> uses two 32-bit L \& R halves
> as for any Feistel cipher can describe as:

$$
\begin{aligned}
& L_{i}=R_{i-1} \\
& R_{i}=L_{i-1} \oplus \mathrm{~F}\left(R_{i-1}, K_{i}\right)
\end{aligned}
$$

$>F$ takes 32-bit R half and 48-bit subkey:

- expands R to 48-bits using perm E
- adds to subkey using XOR
- passes through 8 S-boxes to get 32-bit result
- finally permutes using 32-bit perm P

Single Round of DES Algorithm

Calculation of $\mathrm{F}(\mathrm{R}, \mathrm{K})$

The Expansion Permutation E

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

DES Expansion Permutation

> R half expanded to same length as 48-bit subkey
> consider R as 8 nybbles (4 bits each)
> expansion permutation

- copies each nybble into the middle of a 6-bit block
- copies the end bits of the two adjacent nybbles into the two end bits of the 6-bit block

Calculation of $\mathrm{F}(\mathrm{R}, \mathrm{K})$

Substitution Boxes S

> have eight S-boxes which map 6 to 4 bits
> each S-box is actually 4 little 4 bit boxes

- outer bits 1 \& 6 (row bits) select one row of 4
- inner bits 2-5 (col bits) are substituted
- result is 8 lots of 4 bits, or 32 bits
> row selection depends on both data \& key
- feature known as autoclaving (autokeying)

Box S_{1}

0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	6	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

For example, $\mathrm{S}_{1}(101010)=6=0110$.

Calculation of $\mathrm{F}(\mathrm{R}, \mathrm{K})$

Permutation Function (P)

(d) Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Single Round of DES Algorithm

DES Key Schedule

$>$ forms subkeys used in each round

- initial permutation of the key (PC1) which selects 56 -bits in two 28 -bit halves
- 16 stages consisting of:
- rotating each half separately either 1 or 2 places depending on the key rotation schedule K
- selecting 24-bits from each half \& permuting them by PC2 for use in round function F
> note practical use issues in h/w vs s/w

Permuted Choice One (PC1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

Schedule of Left Shifts

| Round Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bits Rotated | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |

Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

DES Round in Full

 Right Haffi

DES Decryption

> decrypt must unwind steps of data computation
> with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)

- IP undoes final FP step of encryption
- 1st round with SK16 undoes 16th encrypt round
- 16th round with SK1 undoes 1 st encrypt round
- then final FP undoes initial encryption IP
- thus recovering original data value

DES Decryption

Avalanche Effect

$>$ key desirable property of encryption alg
$>$ where a change of one input or key bit results in changing approx half output bits
$>$ making attempts to "home-in" by guessing keys impossible
> DES exhibits strong avalanche

Avalanche Effect

Round		δ	Round		δ
	02468 aceeca86420 12468 aceeca86420	1	9	c11bfc09887fbc6c 99f911532eed7d94	32
1	3cf03c0fbad22845 3cf03c0fbad32845	1	10	887 fbc 6 c 600 f 7 e 8 b 2eed7d94d0f23094	34
2	bad2284599e9b723 bad3284539a9b7a3	5	11	600f7e8bf596506e d0f23094455da9c4	37
3	99e9b7230bae3b9e 39a9b7a3171cb8b3	18	12	f596506e738538b8 455da9c47f6e3cf3	31
4	Obae3b9e42415649 171 cb 8 b 3 ccaca 55 e	34	13	738538 b 8 c 6 a 62 c 4 e $7 f 6 e 3 c f 34 b c 1 a 8 d 9$	29
5	4241564918b3fa41 ccaca55ed16c3653	37	14	c6a62c4e56b0bd75 4 bc 1 a 8 d 91 e 07 d 409	33
6	18b3fa419616fe23 d16c3653cf402c68	33	15	56b0bd7575e8fd8f 1e07d4091ce2e6dc	31
7	9616fe2367117cf2 cf 402 c 682 b 2 cefbc	32	16	75 e 8 fd 8 f 25896490 1ce2e6dc365e5f59	32
8	67117 cf 2 c 11 bfc 09 2b2cefbc99f91153	33	IP^{-1}	da02ce3a89ecac3b 057cde97d7683f2a	32

Strength of DES - Key Size

>56-bit keys have $2^{56}=7.2 \times 10^{16}$ values
$>$ brute force search looks hard
> recent advances have shown is possible

- in 1997 on Internet in a few months
- in 1998 on dedicated h/w (EFF) in a few days
- in 1999 above combined in 22hrs!
$>$ still must be able to recognize plaintext
must now consider alternatives to DES

Block Cipher Design

basic principles still like Feistel's in 1970's
$>$ number of rounds

- more is better, exhaustive search best attack
$>$ function f :
- provides "confusion", is nonlinear, avalanche
- have issues of how S-boxes are selected
>key schedule
- complex subkey creation, key avalanche

Summary

> have considered:

- block vs stream ciphers
- Feistel cipher design \& structure
- DES
- details
- strength
- block cipher design principles

